The visual filter mediating
letter identification

Joshua A. Solomon™ & Denis G. Pellit

Institute for Sensory Research, Syracuse University, Merrill Lane,
Syracuse, New York 13244-5290, USA

* Present address: NASA Ames Research Center, Mail Stop 262-2,
Moffett Field, California 94035-1000, USA

T To whom correspondence should be addressed

WE hear periodic sounds, or tones, by means of parallel auditory
filters, each tuned to a band of temporal frequency', and we see
periodic patterns, or gratings, by means of parallel visual filters,
each tuned to a band of spatial frequency®. Beyond helping us to
see gratings, do these visual filters participate in everyday tasks
such as reading and object recognition? After all, grating visibility
only requires the distinguishing of pattern from blank, whereas
object recognition, for example letter identification, requires classi-
fication by the observer into one of many learned categories. Here
we make use of results from hearing research’, applying to vision
a noise-masking paradigm that reveals the filter(s) mediating any
threshold task. We find that letter-identification and grating-
detection filters are identical, showing that the recognition of these
objects at one size is mediated and constrained by a single visual
filter, or ‘channel’.

Visual science has made great advances using tasks that de-
emphasize cognitive processing in order to isolate ‘low-level’
physiological processes, such as the spatial frequency channels
that mediate grating detection™. However, everyday visual tasks
like reading’ and object recognition® are cognitive, and it is
unclear what role, if any, these channels play in such *high-level’
tasks. Letters, being over-learned, are good for testing the limits
of object recognition. As letters—unlike gratings—are spatially
compact and spectrally broad, we expected their identification
to be mediated by multiple channels, or a much broader channel
than the channel that mediates grating detection. Surprisingly,
our noise-masking paradigm shows that the same channel per-

FIG. 1 Letters in noise, demonstrat-
ing that, despite the broad 1/f”
spectra of letters, noise at 3 cycles
per letter (middle column) masks
letter identification more effectively
than noise at lower or higher fre-
quencies. Read down each column
as far as you can; the positions of
the faintest identifiable letters trace
out the sensitivity of your eye's letter-
identification channel as a function
of spatial frequency. Note that
changes in viewing distance, from 3
to 60 cm, hardly affect the visibility
of any given letter, indicating that the
channel scales with letter size.
(Identification of letters in noise is
independent of size for letters sub-
tending 0.5 to 15.8 degrees of visual
angle®) Letter contrast (luminance
increment divided by background
luminance) decreases by factors of
x0.588 from 0.89 in the top row to
0.063 in the bottom row. The noise
contrast C..s is 0.22. Centre fre-
quency (cycles per letter) of the
noise's octave-wide pass band is:
0.8,d, m,c,w,s h;1.3,¢5¢a,Y,
0, 2.0,p, 0,8 11,32, L5 L8, rw
B bl bo0.8 8L, Lo vod, i1
13-armr bihiks

Vil Aann A HIRE AAnA

forms both low-level detection of narrow-band gratings and
high-level identification of broad-band letters.

Figure | demonstrates the unexpected bandpass nature of
letter identification. Noise at 3 cycles per letter masks letter iden-
tification more effectively than noise at lower or higher frequen-
cies. The contrast sensitivity function traced out by the faintest
identifiable letters has a bandwidth similar to that of filters for
grating detection.

A first step towards understanding an object recognition pro-
cess is to determine which data are used by the process. Figure
2 shows how the high- and low-pass noise-masking paradigm
measures the tuning of the filter mediating any threshold task.
We measure threshold contrast energy (that is, integrated
squared contrast) for letter identification as a function of the
cut-off frequency of the noise. Data from two observers are
shown in Fig, 3.

We express these results in terms of a minimal channel model:
a linear filter followed by a nonlinear decision. It has been dem-
onstrated that threshold signal energy F is linearly related to the
power spectral density of a white noise mask” '’ but what about
non-white noise? If we assume that £ is linearly related to the
total noise power passed by the linear filter, then the frequency
dependence of the filter gain can be derived directly from either
our high- or our low-pass masking results™'' . More generally,
this total-filtered noise-power assumption allows one to derive
the tuning of the observer’s filter for any task as a function of
any dimension, such as spatial frequency, orientation or space,
directly from appropriate noise-masked threshold measure-
ments. The derived filters for letter identification are shown in
Fig. 4.

A remarkable feature of these results is that the filters estima-
ted from high- and low-pass data are so similar. By analogy
with off-frequency listening'”, if an observer could choose one
of many filters, then the ideal strategy would be to look off-
frequency, choosing the filter that yields the best signal-to-noise
ratio''. The observer has every incentive to avoid low-pass noise
by choosing a high-frequency filter, and to avoid the high-pass
noise by using a low-frequency filter. Yet the filters revealed by
high- and low-pass masking are both centred at spatial frequen-
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cies of ~3 cycles per letter, indicating that higher- and lower-
frequency filters must be far less efficient or incapable of mediat-
ing letter identification.

The bandpass nature of these filters is characteristic of spatial
frequency channels, whose one-to-two  octave-wide  tuning
functions (at half height) have classically been estimated by grat-
ing  summation'”, masking'>'* ' and identification at
threshold'”. For a direct comparison, we applied our high- and
low-pass noisc-masking paradigm to a grating identification
task, mcasuring the filter used by an observer to identify the
orientation of a grating that was tilted right or left by 45°. This
task 1s known to produce thresholds similar to thosce obtained
in simple detection experiments™. Although the ~1/f7 letter
spectrum is utterly different from the narrow-grating spectrum,
Fig. 4¢ and d shows that letter and grating identification are
mediated by very similar filters, and off-frequency looking is no
greater with the broad-band letters than it is with narrow-band
gratings. The simplest explanation of this result is that one chan-
nel mediates and constrains object recognition; that is, the filter
reflects the architecture of the visual system.

Of course, at least in principle, the (broad) average letter spec-
trum is irrclevant to letter identification; what matters is the
differences between letters, and no single spectrum can summar-
ize the many pairwise differences. Might the letter-derived filter

FIG. 2 The high- and low-pass noise masking paradigm. The curves
represent the power gain (that is, gain squared) of the observer’s hypo-
thetical filter. The bar along the top of each graph represents the noise
spectrum. Increasing the bandwidth of the noise adds noise in a new
band (outlined by dashes). The effect of the noise in that band can be
gauged by the resultant change in threshold, and independent esti-
mates are provided by the high- and low-pass experiments. If we
assume that the threshold energy is proportional to total filtered noise
power, which is the black area under the filter's power gain curve, then
the change in threshold specifies the filter's gain in the new band.

merely reflect the demands of the letter-identification task, rather
than a constraint of human vision? To dctermine what filter
would reflect the task, we implemented the ideal classifier for
letters in white noisce, and applied our masking paradigm to it.
The ideal classifier maximizes the probability of a correct
response by choosing the hypothesis (letter identity) with maxi-
mum a posteriori probability. The white-noise ideal classifier
chooses the letter that minimizes total squared difference
between letter and stimulus, normalized by twice the noise vari-
ance, minus the letter’s log prior probability®. The white-noisc
ideal classifier received the same information, as numbers, that
was presented to the human observers as visual stimuli. The
white-noise ideal classifier is idcal only when the noise is white.

The ratio of the ideal’s threshold energy to that of a particular
observer defines the observer’s cfficiency at that task. Observer
L.L.’s and J.S.’s cfficiencics at high levels of white noise, when
E*>E,, are 13% and 10% for letter identification, and 6% and
8% for grating identification. Higher cfficiencies have been
reported : up to 42% for letter identification™ and up to 70% for
grating discrimination’. However, in the former casc, stimuli
were band-pass-filtered, which may boost efficiency™, and in the
latter, the task was discrimination of ncar-threshold contrasts
of otherwise identical gratings, which increases cfficiency as
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much as 9-fold over detection .

FIG. 3 Threshold signal-to-noise ratio, E*/N, 80 100,

for letter identification as a function of cut-off

frequency of high pass (open symbols) or low o 80|

pass (filled symbols) noise, where N is the =

spectral density of the noise mask and E*= f:)

E—E, denotes the difference in threshold con- .g 60

trast energy for identification between noise- S

masked and non-masked letters. Letter size is e 40

specified by the font's x height, which was E

0.95". As rendered in the Adobe Bookman font, .%ﬂ

14 of the 26 lower-case letters in the English ) 20
alphabet—acemnorsuvwxz—have the same 8

height (top to bottom) as an x, and the rest— § 0

bfghijklpgty—are higher. When occurring at =

English language frequency (that is, many e L.L.

and few j characters)’®, as in our experiments, 20 : -20 : '
the average letter height and width are 1.13 0.1 10 100 0.1 1 10 100

and 1.08 x heights, respectively. Letters were

presented randomly, for 195 ms, at their

English language frequencies. As shown in Fig. 2, the noise, which was
static and isotropic, had power spectral densities of zero and N on either
side of the cut-off frequency. All stimuli were displayed with gamma
correction”® on a monochrome CRT with a background luminance of
71 cd m °. The VideoToolbox software®® used in these experiments is
available by anonymous ftp of ‘info-mac/dev/src/video-toolbox-. ..
from sumex-aim.stanford.edu. The viewing distance was 120 cm. The

Cut-off frequency (cycles per ictter)

spatial extent of each noise mask was 3.9" x 3.9". Each plotted symbol
represents a maximum likelihood estimate of threshold (63% correct)
based on at least 4 sessions of 30 trials each®. Standard error of
each threshold measurement is indicated. Subsequent analysis of each
observer’'s thresholds used maximum-likelihood, monotonic fits (solid
curves) constrained to be positive with equal white-noise asymptotes.
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FIG. 4 a and b, Letter-identification filters for two subjects L.L. and J.S.,
as derived from Fig. 3. Error bars contain the 68% confidence interval
about each plotted gain, as determined below. Zero gain is indicated
by plotting the symbol on the horizontal axis. Filters plotted in a are
replotted in ¢ (high pass) and d (low pass) for comparison with similarly
derived filters for grating identification by the same observer and letter
identification by the white-noise ideal. (The other observer, J.S., pro-
duced similar results, which are not shown.) Each sinusoidal luminance
grating had a spatial frequency of 3 cycles per letter, or 3.2 cycles per
degree, tilted 45" to the left or right, and its contrast was windowed by
a spatial gaussian envelope with a space constant of one grating period,
centred midway between a peak and trough. Filter derivation: We
assume that the threshold E is linearly related to the total noise power
passed by some filter G(f, (),

1 2r
E-E,ta J dff dOfG(f, OIN(, 6) (1)
O (&)

where E, is the threshold measured without display noise, a is a propor-
tionality constant, f is radial spatial frequency, 0 is orientation, G*(f, 0)

Figure 4¢ and  shows that the white-noisc-ideal-derived fil-
ter  which is a pure reflection of the demands of the task—-is
low-pass, unlike the human-derived filters, which are bandpass.
The high gain of the ideal filter at low frequencies indicates the
presence of information relevant to letter identification at these
frequencics. The rapid fall-off of the gain of the human filters
at frequencics below 1.5 and above 6 cycles per letter indicates
that the human identifying letters is insensitive outside this two-
octave band. The high-frequency fall-off parallels the finding
that adding noisc between 10 and 40 cycles per picture height is

is the filter's power gain, and N(f, #) is the power spectral density of
the displayed noise. (This is equivalent to assuming a constant signal-
to-noise ratio at the output of the filter at threshold.) E, may be due to
intrinsic visual noise®; we subtract if from all of our data, leaving just
the threshold elevation E* = E — E, due to the displayed noise. The low-
and high-pass noise spectra are

N forf<f,

Nlow(fv ()) - {
0 forf=f,

0 forf<f,

Nhign(f, 0) =
renlf, 0) {N for f=f,

where f, is the cut-off frequency. Substituting each of these noise spec-
tra into equation (1), differentiating with respect to cut-off frequency,
and solving for the filter's average power gain across all orientations
yields

) 1 dEE,
2= T 2)
2rafN  df
and
-1 dE},
G¥f)= nien @3)
2zafN  df

where E ., and E %, are the threshold elevations produced by low- and
high-pass noise, as a function of cut-off frequency. Comparisons among
filters are facilitated by normalizing the gain so that all the filters pass
equal power from a white noise input. This is achieved by setting the
equation (1) proportionality constant to a=E# /N, where E¥, is the
threshold elevation in white ‘all pass’ noise with power spectral density
N. In our experiments we only used discrete values of cut-off frequency,

f,, fii1,..., SO we use discrete approximations to equations (2) and
3),
G2< [t +f?>~ 1 Ebulfi )~ Ebulf)
2 E % fi2< 17 fo
and

Gy(\/ﬁ?‘ﬁfj)N;{ Efign(fi 1 1) — Eflgn()
2 TEN fla—f7

which are exact if G*(f) is constant over the interval f to f, .

much more effective in suppressing face recognition than adding
noise between 40 and 70 cycles per picture height™. The low-
frequency fall-off’ confirms the human observers’ inability to
identify severely low-passed noisy letters, which are still identifi-
able by an ideal observer™, and severely impaired character
legibility”” and rcading rate® for text optically low-pass filtcred
to less than 2 cycles per character width. Thus the channel medi-
ating letter identification is very different from what one would
expect solely from a consideration of the task, and instead rep-
resents a visual constraint upon object recognition. O
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